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The Theory of Electronic Separability is applied to the calculation of the ground state total energy and 
related bulk properties of simple ionic crystals. The work is based on a general equation of this theory 
that gives the total energy of the crystal in terms of additive energies of conjugate clusters. The cluster 
additive energy is deducible from standard cluster-in-the-lattice calculations once the effective energy 
of the cluster is partitioned into net (cluster-in uacuo) energy and cluster-lattice interaction energy. 
In this way, the cluster approach becomes a rigorous theoretical tool to compute crystalline bulk 
properties. Taking the NaF as an example, this approach is discussed for two different cluster sizes: 
single-ion cluster and octahedral species like NaFa- and FNg+ Given the relevance of the interaction 
energy, several approaches to this quantity are analyzed in detail, from the unphysical stage of its total 
neglect (cluster-in uac~o calculations) to rigorous formulations involving lattice models which are 
consistent with the Theory of Electronic Separability. The properties of the NaF crystal analyzed in 
this work include equilibrium geometry, cohesive energy, elastic constants, and external pressure 
effects on these quantities. 0 1990 Academic Press, Inc. 

I. Introduction constants, and the equation of state are bulk 
properties. 

The observable properties of solids are The theoretical interpretation of the crys- 
usually divided into two broad categories: tal properties is made in terms of different 
local and bulk properties. The former in- theoretical approaches, according to the lo- 
elude phenomena that are determined by cal or nonlocal character of the property in 
interactions within a few atoms, ions, or question. In dealing with local properties, 
molecules in the crystal. Examples are lo- the cluster approximation has received 
calized excitations, properties of impurities much attention in the past years. In this 
and point defects, and covalency. Bulk approximation the properties of interest are 
properties are determined by interactions deduced from the electronic structure of the 
involving very many centers or, in the limit, cluster, a small group of atoms or ions em- 
the infinite crystal. Crystal geometry, elastic bedded in the rest of the crystal. A few re- 
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cent works will suffice to show the wide 
interest of this approach: Vail and co-work- 
ers computed absorption and emission elec- 
tronic transitions of pure ionic crystals (Z), 
and simulated point defects in NaF and MgO 
(2,3). Brener and Callaway (4) and Janssen 
and Nieuwpoort (5) studied the electronic 
structure and optical spectrum of NiO. 
Richardson and Janssen (6) analyzed the op- 
tical excitation energies of the MnSi- clus- 
ter in Mn : ZnS. Shashkin and Goddard com- 
puted the Jahn-Teller splitting of Cu2+ in 
K,CuF, (7). Winter et al. (8) and Barandi- 
aran and Seijo (9) investigated the electronic 
structure of the Cu+ impurity in NaCl. 
Green and Jennison (10) computed the inter- 
atomic Auger rates for initial Is, 2s, and 2p 
holes in the Na+ ion in NaF. 

Clearly, a single cluster calculation is un- 
suited to describe the bulk crystal properties 
that by definition are determined by the in- 
finite crystal. However, the Theory of Elec- 
tronic Separability (TES) when applied to 
ionic solids (II) tells us how to use the clus- 
ter approach to obtain bulk properties in a 
rigorous manner. The TES gives equations 
for the total energy of the crystal that in- 
volve the additive energy of all those active 
groups necessary to count all different inter- 
actions within the crystal. Such active 
groups are clusters whose electronic struc- 
ture can be computed by means of quantum- 
mechanical methods. The additive energy 
of a cluster includes the net or intracluster 
energy plus one-half the interaction energy 
between the cluster and the rest of the lat- 
tice. The cluster approach to the total en- 
ergy requires then the consideration of two 
or more clusters in such a way that all rele- 
vant crystal interactions are present in the 
sum of the cluster additive energies. In con- 
sequence, a general cluster package may be 
a rigorous tool to compute crystal total ener- 
gies if (a) the cluster-lattice interaction is 
included and (b) the net and interaction com- 
ponents of the cluster energy are explicitly 
determined. 

In simple ionic crystals like binary ox- 
ides the necessary partition into conjugate 
clusters is straightforward since there are 
only three different types of two-body in- 
teractions: cation-cation, cation-anion, 
and anion-anion. In more complex sys- 
tems the partition may require a little bit 
of analysis. In a binary compound like NaF 
the simplest partition consists in single-ion 
clusters. The conjugate clusters are simply 
the Nat cation and the F- anion. This 
partition gives rise to the Perturbed Ion 
(PI) method, a TES-consistent scheme re- 
cently developed in our laboratory that has 
given very good resuls in alkali halides and 
hydrides and in MgO (12, 13). The next 
larger cluster is the diatomic NaF “mole- 
cule.” The effective energy of this cluster 
contains all relevant two-body interaction 
within the NaF crystal. In consequence, it 
does not need a conjugate cluster to gener- 
ate the crystal total energy which is just 
the additive energy of this diatomic cluster. 
Next, we may consider the conjugate (lin- 
ear or triangular) triatomic NaF; and 
FNal clusters, and so on. In this work we 
have examined in detail the conjugate oc- 
tahedral NaFi- and FNG+ clusters. 

Our previous work on the PI model 
suggests that in computing the bulk proper- 
ties of simple ionic crystals the size of the 
cluster may be less important than the 
quality of the model used for the clus- 
ter-lattice interaction. Accordingly, we 
have focused the attention in the study of 
different approximations to this inter- 
action. 

First, we discuss the simplest approxi- 
mation of zero cluster-lattice interaction. 
This stage gives an unbound crystal since 
the long-range Coulombic attractions are 
neglected. Next, we consider two intuitive 
models of cluster-lattice interaction that 
may be useful in more complex crystals. 
The first one is the usual point-charge 
lattice model that neglects the quantum 
nature of the lattice ions. The second 
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model corrects the first one by adding 
nearest-neighbors lattice repulsions. These 
repulsion are nonempirically deduced from 
the cluster calculation in the way proposed 
by Miyoshi and Kashiwagi (14). Finally, 
we examine two rigorous quantum lattice 
models (II, 15) consistent with the ideas 
of the TES: the Hat-tree or Coulomb model 
and the ab initio Model Potential (MP) 
lattice model. The Hartree model includes 
nuclear attraction and exact Coulombic 
repulsion plus the lattice projection re- 
quired by the TES to maintain cluster- 
lattice orthogonality. The ab initio MP lat- 
tice model enlarges the Hartree model with 
a nonlocal lattice exchange operator of the 
form introduced by Huzinaga and co-work- 
ers (26). 

All these lattice models have been inter- 
faced to a cluster package that solves the 
Hat-tree-Fock-Roothaan (HFR) equations 
for an octahedral cluster over a multicenter 
basis set of Slater-type orbitals (STO). This 
package was written by Richardson and 
co-workers as a tool for computing the 
electronic structure of transition metal ions 
in crystals (27). It has been modified and 
systematically tested in our laboratory dur- 
ing the last 10 years. Its final version has 
given good results for this type of system 
(1% 

The investigation reported in this paper 
confirms that the bulk properties of ionic 
crystals can be accurately computed by 
following the rules of the TES and using 
the cluster approximation. In particular, 
the present nonempirical calculations of 
crystal geometry and cohesive energy are 
as good as those obtained with the elec- 
tron-gas, pair-potential theory (18), or the 
band structure approach (19). The present 
scheme offers significant theoretical advan- 
tages. More noticeable is perhaps the pos- 
sibility of adapting standard quantum- 
chemical packages to the immediate calcu- 
lation of bulk properties of crystals. Con- 
sideration of clusters of different size shall 

give significant information on the nature 
of the interparticle interactions. Given a 
general cluster package this research 
should be readily at hand. In particular, 
the moderately easy incorporation of 
many-body effects in the calculation, by 
enlarging the size of the cluster, shall per- 
mit us to analyze the importance of these 
effects in questions like the pressure-vol- 
ume behavior of the crystal and the pres- 
sure at which polymorphic transitions oc- 
cur. Furthermore, each single cluster 
calculation in this scheme may give accu- 
rate values for local properties which by 
definition should be well described by a 
cluster model. Thus, this new approach 
should give immediate information on the 
local or nonlocal character of a crystal 
property, as well as on the relevance of the 
cluster-lattice interaction in a particular 
system. 

II. Theory 

From the application of the TES to ionic 
solids (II) we briefly recall the following. 
Our first assumption will be that the crystal 
under consideration can be partitioned into 
an active group, in which the self-consistent 
field (SCF) or configuration interaction (CI) 
equations are solved, and a collection of 
frozen groups that enter into the SCF pro- 
cess only through the effective potential and 
the group projection they exert on the active 
group. Clearly, this partition can be made in 
a very large number of ways. For a given 
partition, the energy terms depending ex- 
plicitly upon the wave function of the active 
group A are collected in the effective energy 
of this group 

(1) 
where E$ is the net energy of the active 
group collecting all intragroup interactions, 
and E{, is the interaction energy of the ac- 
tive group with all frozen groups of the sys- 
tem. The wave function of the A group is 
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obtained, in a SCF or CI sense, by minimiz- 
ing its effective energy. E& is then the en- 
ergy directly obtained in the cluster-in-the- 
lattice calculation. 

Since the effective energies are not addi- 
tive, because the sum of the interaction 
terms would count the interaction energy 
twice, the additive energy of the active 
group is introduced through Eq. (2): 

EA add = E& + ; EiA,,. (2) 

If a crystal is fully partitioned into a A 
groups, plus b B groups, etc., the crystal 
energy becomes: 

E crystal = d?&, + bEfdd + C-E!& + . . . 

(3) 
To relate this equation to the cluster ap- 

proximation we simply identify each A, B, 
c, . . . group with a cluster whose elec- 
tronic structure may be calculated by means 
of a quantum-chemical package. The im- 
portant point here is to recall that we have 
to consider in Eq. (3) a collection of clusters 
containing all different interactions in the 
crystal. 

For binary compounds like NaF the anal- 
ysis is particularly easy. We can start by 
considering single-ion clusters. Eq. (3) be- 
comes 

E crystal = ~(E,,,(Na+) + EadF-1) (4) 

if we deal with a crystal containing N NaF 
“molecules.” We say that the Na+ and F- 
ions are conjugated clusters because taken 
together in Eq. (4) they include the three 
different two-body interactions in the NaF 
crystal. Next, we can consider diatomic 
clusters. In this simple case, the additive 
energy of the diatomic NaF cluster incorpo- 
rates all crystal interactions and we do not 
need a conjugate cluster, although we could 
formally write 

E crystal = (N/2) {E,,,(NaF) + E,,,(FNd) 
(5) 

if we consider the FNa molecule as the con- 
jugate cluster of the NaF. Since these two 
conjugate clusters are the same system, the 
energy of the crystal per molecule is just 
the additive energy of the NaF cluster. The 
difference between Eqs. (4) and (5) is that a 
two-center electron density is created in the 
SCF solution of the latter. This incorporates 
further variational freedom as well as a SCF 
treatment for the two-center interactions. In 
the same way we can write for triatomic 
clusters 

E crystal = (N/3) b$,,(NaF;) + &,(FNa:)} 
(6) 

and for octahedral clusters 

E crystal = (N/7) {&,(NaF 2 > 
+ E,,,(FNa:+)h (7) 

Thus, more accurate description of the 
multicenter interactions and increasing vari- 
ational freedom are gained when the size of 
the cluster increases. The price is obviously 
the need for more sophisticated computer 
programs and greater amounts of computer 
time. 

The ideal application of formulas like Eqs. 
(6) and (7) involves accurate cluster calcula- 
tions and rigorous models for the clus- 
ter-lattice interaction appearing in the ef- 
fective and additive energies. The cluster 
calculation demands an all electron Har- 
tree-Fock calculation plus a detailed con- 
sideration of the electron correlation. The 
cluster-lattice interaction demands mathe- 
matical and physical consistency between 
cluster and lattice models, which means ac- 
curate wave functions to describe the lattice 
atoms or ions, accurate coulomb and ex- 
change interaction between cluster and lat- 
tice electrons, plus a mathematical device to 
interface the cluster and lattice descriptions. 
However, one frequently has to introduce 
approximations in the cluster calculation 
(core-valence partition, integral approxima- 
tions, small basis sets if the Roothaan 
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scheme is adopted, lack or insufficient 
amount of electron correlation, etc.) as well 
as in the lattice model (use of a point-charge 
lattice, free-space effective potentials, lack 
or insufficient cluster-lattice interfacing, 
etc.). The introduction of approximations 
makes it necessary to analyze how well a 
given model can work, i.e., how much accu- 
rate information and how many physical 
ideas can be obtained from it. This type of 
analysis is reported in the following sec- 
tions. We present here several applications 
of Eq. (7) as well as a very brief comment 
on Eq. (4). 

III. Single-Ion Clusters: The Perturbed 
Ion Method 

We will not discuss this stage because the 
Perturbed Ion (PI) method has been recently 
reported, with particular reference to NaF 
and other alkali halides and hydrides (12, 
13). We simply will recall that, whereas the 
PI atomic-like orbitals for the Nat ion are 
very close to the free ion AOs, the fluoride 
2p PI A0 shows a noticeable contraction 
with respect to the free ion orbital. This 
anionic contraction makes the crystal sta- 
ble. The ground state total energy shows a 
minimum at 2.371 A, 0.054 A larger than the 
experimental value. The cohesive energy at 
this geometry is 218.7 kcal/mole, to be com- 
pared with experimental values ranging 
from 2 14 to 221 kcal/mole. The bulk modu- 
lus given by the PI calculation is 49.1 GPa, 
the experimental data ranging from 46.5 to 
51.5 GPa. The pressure derivatives of this 
modulus and the pressure dependence of 
the cell volume also agree with available 
experimental data. 

The PI model is fully consistent with the 
TES. Its implementation gives an efficient 
algorithm to compute the bulk properties of 
the alkali halides. The use of Eq. (4) makes 
the complete PI calculation very economic. 
Moreover, the PI model works also as a 
basis set generator. It produces atomic-like 

orbitals that are consistent with the (quan- 
tum-mechanically described) crystalline en- 
vironment. On the other hand, it is the first 
step in an accurate cluster calculation. All 
multicenter interactions are neglected in the 
PI SCF process, with the corresponding loss 
of physical detail and variational freedom. 

IV. Octahedral Clusters: Simple Lattice 
Models 

We now report results obtained from Eq. 
(7). Three intuitive models for the clus- 
ter-lattice interaction (including its total ne- 
glect) have been considered, as follows. 

A. Total Neglect of the Cluster-Lattice 
Interaction 

This stage corresponds to the cluster-in 
uacuo description. The classical, point- 
charge approximation gives a cluster net en- 
ergy of the form 

E,,,,,(R) = 6qMqJR + [6(2)“* + 31219 t/R, 
(8) 

where qM and qL are point-charges repre- 
senting the metal and ligand ions separated 
a distance R in the octahedral cluster. 
E,,,,,(R) is a continuously repulsive curve 
that gives a bound cluster state when the 
cluster-lattice interaction is added to it (20). 

To describe these systems quantum-me- 
chanically, we have used the original HFR 
programs for octahedral clusters developed 
by Richardson’s group (17). Given the 
highly ionic character of the NaF crystal, 
the renormalization correction (21, 22) and 
the core projection (23, 24) have been ne- 
glected at this stage. 

New reduced basis sets for Na+ and F- 
ions have been generated for the present 
calculation. The Na+ basis was prepared 
as follows. First, the Clementi-Roetti (25) 
multi-l basis is reduced to a 3s2p size by 
means of the maximum-overlap algorithm 
of Francisco et al. (26). Then the atomic 
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TABLE I 

PSEUDO-HARTREE-FOCK BASIS SETS PREPARED IN THIS WORK (B2 BASIS) FOR Na+ AND F- IONS 

1 8.57204 0.9969828 
2 2.86217 0.0122767 
2 1.62753 -.0044244 

4nl) -25.88860 

1 10.54139 0.9969036 
2 3.50197 0.0133373 
2 2.14034 -.0054706 

EW) -40.75815 

F- 
- .2581086 

0.7748277 
0.2948616 

- 1.07306 
Na+ 

-.2789483 
0.9016370 
0.1527821 

-3.05504 

2 3.26799 0.5728137 
2 1.26842 0.5512582 

E(nl) -0.17894 

2 5.04838 0.4117595 
2 2.43709 0.6609965 

4nl) - 1.79855 

SCF program is executed over the reduced The HFR equations have been solved for 
set of orbital exponents. This gives the final the NaFz- and FNd+ clusters in uucuo, 
basis. The F- ion has been described with within the B 1 and B2 bases, at several values 
two different basis. The first one is the mini- of R. At this stage, the net energy of the 
mal basis reported in Ref. (27). This choice cluster coincides with the additive and effec- 
plus the new set for the Na+ ion will form the tive energies. The net energy is collected in 
Bl basis from now on. The second fluoride Table II. Equation (7) gives us the energy of 
basis has been prepared from Clementi- the crystal, also appearing in the table. As 
Roetti sets in the manner described for the expected, all these calculations give repul- 
Na+ ion. This 3s2p choice plus the Na+ sive clusters (see the curves at the top of 
basis form the B2 basis. The new B2 set can Fig. 1) and an unbound crystal for the range 
be seen in Table I. 4 9 R I 5 bohr (see Fig. 2A). Use of small 

TABLE II 

CLUSTER ADDITIVE ENERGY AND CRYSTAL ENERGY FROM Bl 
AND B2 CLUSTER-IN VACUO CALCULATIONS 

2.15 -752.65704 
2.25 -752.71198 
2.35 -752.75832 
2.45 -752.79858 
2.60 -752.85005 

cc -753.66352 

2.15 -756.62643 
2.25 - 756.71237 
2.35 - 756.77450 
2.45 - 756.82656 
2.60 - 756.89005 

Y, - 757.72267 

Bl basis 
- 1067.21266 
- 1067.26728 
- 1067.31345 
- 1067.35363 
- 1067.40506 
- 1068.21839 

B2 basis 
- 1067.81160 
- 1067.88643 
- 1067.94793 
- 1067.99961 
- 1068.06277 
- 1068.89492 

-259.98139 
- 259.99704 
- 260.01025 
-260.02174 
- 260.03644 
- 260.26885 

- 260.63543 
- 260.65697 
- 260.67463 
- 260.68945 
- 260.70755 
- 260.94537 
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basis sets and neglecting the cluster-lattice 
interaction are responsible for this repulsive 
energy curves. Basis sets enlarged with dif- 
fuse functions can give, at the cluster-in 
uacuo level, a cluster effective energy curve 
with a shallow minimum for the ground state 
of the NaFi- cluster, as discussed by Ber- 
mejo et al. (28). The cluster-lattice interac- 
tion can also produce such minima, as we 
show below. 

From Table II we can observe that the 
difference E,,,(R) - E,,,(m) is nearly the 
same for the two clusters in the Bl calcula- 
tion. This small basis makes the clusters 
slightly more repulsive than the classical 
one. The B2 calculation gives still more 
repulsive clusters because the fluoride or- 
bitals are more diffuse in this representa- 
tion. We can also notice the variational 
improvement associated with the larger B2 
basis. 

This calculation is thus totally inade- 
quate to obtain bulk properties of the crys- 
tal. Before passing to the next level of 
approximation, we will obtain the nonclas- 
sical intracluster interaction energy by sub- 
tracting the classical term in Eq. (8) from 
the difference E,,,(R) - E,,,,(m). If we 
further assume that the nonclassical fluo- 
ride-fluoride interaction is negligible, we 
have the following nonclassical, so- 
dium-fluoride pair energy: 

(9) 

The assumption of zero nonclassical 
F--F- energy is consistent with the neglect 
of the renormalization correction in the 
quantum calculation. It seems also reason- 
able in view of the quasi-classical behavior 
of the fluoride ion in the HFR calculation. 
The first-principles E,,(R) in Eq. (9) will be 
incorporated later on in the cluster-lattice 
interaction as a short-range repulsion, in the 
manner proposed by Miyoshi and Kashi- 
wagi (14). The resulting values of E,,(R) can 

Energy (hartree) 

-3.4~ 
\ 

-+& Jy 

I 

4.2 4.4 4.6 4.8 
R (bohr) 

FIG. 1. B 1 (solid lines) and B2 (dotted) cluster effec- 
tive energy, referred to E&m), for the FNG+ system 
in uucuo and embedded into a fixed, point-charge lattice 
(PCL), and a Born-Mayer (BM) lattice. 

be very well represented by simple expo- 
nential expressions of the Born-Mayer type 
(in atomic units): 

E:,!(R) = 1139.957 exp( - 3.08688 R) (10) 

Et:(R) = 26.23721 exp( - 1.80971 R). (II) 

Notice that the more compact Bl basis 
gives a sharper repulsion. 

B. The Point-Charge Lattice 
First, let us recall that in dealing with oc- 

tahedral clusters and a nonvanishing clus- 
ter-lattice interaction, the ground state 
equilibrium geometry of a crystal like NaF 
can be obtained from three different energy 
curves: (a) the E,,(R) curve of the NaFz- 
cluster in a fixed lattice, (b) the E,,(R) curve 
of the FNaz+ cluster in a fixed lattice, and 
Cc) the &rystad~) curve, Eq. (7). In the last 
case, a different lattice parameter is used for 
each different cluster-in-the-lattice calcula- 
tion, i.e., the vertical calculation of Eadd 
(NaFz-) and E,,,(FNaz+) at a Na+-F- dis- 
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tance Ri involves a lattice with first-neigh- 
bors distance equal to Ri. 

In the point-charge lattice model we com- 
pute the lattice potential by means of the 
Ewald method at very many points within 
the cluster volume. These numerical values 
are then represented by an accurate one- 
particle fitting function in the manner de- 
scribed in Ref. (II). This function is in- 
cluded in the cluster Fock operator before 
the convergence process. 

The ground state effective energy of the 
FNai+ cluster, as obtained with the point- 
charge lattice fixed at the observed geome- 
try, is plotted in Fig. 1. The coulombic at- 
traction is strong enough to produce a mini- 
mum in the B I curve. The cluster repulsions 
within the B2 basis are larger than this lattice 
attraction and the B2 curve gives an un- 
bound cluster. 

The results of the crystal calculation in 
terms of Eq. (7) appear in Table III. Figure 
2B shows that both bases give unstable crys- 
tals at this level of approximation. B 1 basis 
gives a crystal energy slightly different from 
the Madelung value. B2 basis shows again 
a larger repulsion. Both calculations tell us 
that the lattice attractions surpass the in- 
tracluster repulsions. The result is a collaps- 
ing crystal. 

C. The Born-Mayer Lattice 

Finally, let us see results from cluster-in- 
the-lattice calculations involving short- 
range repulsions of the Born-Mayer type. 
These repulsions have been added to the 
interaction energy as a perturbation, after 
the SCF process. As noted before, only 
metal-fluoride repulsions have been consid- 
ered, through Eqs. (IO), and (11). 

The effective energy of the FNaz+ cluster 
in the experimental lattice can be seen in 
Fig. 1. Both bases give a bound cluster. No- 
tice that these nonempirical Born-Mayer 
repulsions depend upon the basis set used 
in the cluster calculation. B2 repulsions are 
noticeably larger than the Bl values. 

The crystal calculations are collected in 
Table IV and the crystal energy, referred 
to the infinitely separated ions, has been 
plotted in Fig. 2C. The small Bl repulsion 
deviates the crystal energy from the Made- 
lung value only at the shorter distances. The 
B2 basis, with a larger repulsion that in- 
creases at shorter distances, gives a bound 
crystal. From this ground state curve we 
obtain R, = 2.369 A (2.317 A experimental) 
and a cohesive energy of 213.5 kcalimole. 

Notice, finally, the two remarkably differ- 
ent predictions obtained in this section: (a) 
the geometry of a cluster embedded in the 
observed lattice (Fig. l), using the cluster 
effective energy, and (b) the geometry of the 
crystal, from Eq. (7). The second prediction 
means that the simple point-charge lattice 
model is still unsuited to obtain bulk proper- 
ties of the crystal, although the local proper- 
ties associated to the cluster may be evalu- 
ated at this level with the Bl basis. Of 
course, in this pure system the crystal and 
the cluster are the same chemical species 
and the above difference is unphysical. In 
an impurity system, like Cr+ : NaF, the dif- 
ference makes sense. The present analysis 
shows the different meaning of these two 
calculations, the more economic approach 
to the local or cluster properties, and the 
possibility of obtaining bulk properties from 
the cluster approximation and Eq. (7). 

A few words of caution should be added 
here. The lattice repulsion correction intro- 
duced in the manner proposed in Ref. (14) 
makes use of the next-neighbor position to 
estimate the repulsion energy. This neces- 
sarily must lead to a bound cluster unless a 
poorly flexible basis should give rise to a 
very small lattice correction. Indeed, we 
could argue that the value of R, obtained 
in the calculation is already present in the 
algorithm through this correction. Thus, not 
too much meaning must be attached to the 
apparently successful result of this ap- 
proach. Only when the lattice interactions 
are introduced in a completely nonempirical 
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FIG. 2. Crystal energy of NaF referred to the infinitely separated ions (Eq. (7)). 

manner can we use the resulting values of partitioned into pure-electrostatic and 
the geometrical parameters as a guide to short-range contributions (18). The classical 
appraise the performance of the calculation. terms were given by Cowley (29). The short- 

From the E crystal(R) curve obtained in the range contribution depends upon the form 
Born-Mayer-B2 calculation we can deduce of the potential. For nearest-neighbors po- 
elastic constants and the high-pressure be- tentials the expressions are (18): 
havior of the crystal. The three independent 
elastic constants of the cubic crystal can be csp = (l/z?)(dW(+ ,-)ldzP),, (12) 
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TABLE III 

RESULTS FROMTHE POINT-CHARGE LATTICEMODEL 

2.15 -755.14515 
2.25 - 755.08886 
2.35 - 755.03349 
2.45 - 754.98038 
2.60 - 754.90743 

Cc - 753.66352 

2.15 - 759.10422 
2.25 - 759.07939 
2.35 - 759.04023 
2.45 - 758.99931 
2.60 - 758.93890 

m - 757.72267 

Bi basis 
- 1069.70077 
- 1069.64416 
- 1069.58862 
- 1069.53543 
- 1069.46244 
- 1068.21839 

B2 basis 
- 1070.29639 
- 1070.25345 
- 1070.21366 
- 1070.17236 
- 1070.11162 
- 1068.89492 

- 260.69227 
- 260.67615 
- 260.66030 
-260.64512 
- 260.62427 
- 260.26885 

-261.34294 
-261.33326 
-261.32198 
-261.31024 
- 261.29293 
- 260.94537 

cy,R = - (l/R2)(dV( + ) -)/dR), (13) 

cz = (l/P)(dV( + ) -)ldR), (14) 

where SR is short-range contribution, 
V( + , -) is the nearest-neighbors short- 
range potential, and the subscript 0 indicates 
that the derivatives must be evaluated at the 
equilibrium geometry. Using Eq. (11) for 
V(+,-)we find 

C,, = -1.27802/a4 + Au*exp(- cra)la 
(15) 

C,, = 0.05649/a4 + ACT exp(- ra)la* 
(16) 

C, = 0.639011a4 - Aa exp( -aa)la' 
(17) 

with A = 26.23721 and o = 1.80971. The 
bulk modulus is given by 

TABLE IV 

RESULTS FROM THE BORN-MAYERLATTICE MODEL 

2.15 -755.08348 
2.25 - 755.05456 
2.35 - 755.01756 
2.45 - 754.96977 
2.60 - 754.90296 

cc - 753.66352 

2.15 - 758.85067 
2.25 - 758.89962 
2.35 -758.91276 
2.45 - 758.90893 
2.60 - 758.88445 

so - 757.72267 

Bl basis 
- 1069.63910 
- 1069.60986 
- 1069.57269 
- 1069.52482 
- 1069.45797 
- 1068.21839 

B2 basis 
- 1070.04284 
- 1070.07368 
- 1070.08619 
- 1070.08198 
- 1070.05717 
- 1068.89492 

- 260.67465 
- 260.66634 
- 260.65575 
- 260.64208 
- 260.62299 
- 260.26885 

-261.27050 
-261.28190 
-261.28556 
- 261.28442 
- 261.27737 
- 260.94537 
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TABLE V 
EQUILIBRIIJMGEOMETRY(&,BINDING ENERGY (kcal/mole), ELASTIC CONSTANTS (GPa), AND fee-bee 

TRANSITION PRESSURE (GPa) 

Ref. 

(26) 
(18) 
(40) 
(19) 
(39) 

This work 
Experimental 

& Eo CII Cl2 G4 B C’ P 

2.29 205.1 25.19 31.63 27.03 
2.305 211.9 80.0 21.8 27.8 45.5 26.5 32.6 
2.241 202.4 55.8 <o 
2.317 224.7 64.9 
2.283 223 50.8 20.0 
2.369 213.5 77.2 25.2 25.7 42.5 25.9 
2.295” 216.0” 108.5’ 22.9’ 29.0’ 51.4’ 42.8’ 27d 

” Ref. (42). 
b Ref. (43). 
c Ref. (37). 
d Ref. (31). 

B = (C,, + 2C,,)/3 

and the shear modulus by 

(18) 

C’ = (C,, - C,,)/2. (19) 

The results of this calculation are col- 
lected in Table V. The predictions of this 
simple model are reasonably accurate and 
compare well with those obtained by Cohen 
and Gordon (18) and other workers. The 
equilibrium distance is 0.05 A larger than the 
experimental value but the cohesive energy 
deviates only by 2.5 kcal/mole. The elastic 
constants are similar to those reported in 
Ref. (18). Notice that the experimental val- 
ues have been obtained at 4.3 K, where 
zero-point effects may be significant. Our 
computed C12 is slightly larger than C,, in 
agreement with the experimental ordering. 
This deviation from the Cauchy relation (C,, 
= C,, + 2p, p being the external pressure) 
may be attributed to the small multicenter 
energy terms appearing in the intracluster 
part of our crystal calculation, since the 
Cauchy relation holds in centrosymmetric 
crystals with two-body interionic potentials. 
The small difference between our values for 
C,, and C’ is also consistent with the ob- 
served trends in alkali halides. 

To end this section we will discuss briefly 

the predictions of this model on the pressure 
behavior of the elastic constants of the NaF. 
The Gibbs free energy of the crystal at 0 K 
can be written as a function of the external 
pressure and the interionic distance 

GW, PI = &sta,(W + 2~ R’, (20) 

since the “molecular” volume of the fee 
phase is 2R3. Taking the crystal energy, 
computed with the B2 basis, into Eq. (20) 
we find the free-energy isobars of Fig. 3. We 
see that the Gibbs function increases and 

G (hartree) 
o.ool-~ -~ - 

.iOGPaj 

_ 30 GPa 

- 20 GPa 

. 10 GPa 

- - 5GPa . . 

. - - . 0 GPa 

/ ! 
3.75 4.00 4.25 4.50 4.75 5.00 

R (bohr) 

FIG. 3. Gibbs free-energy isobars (hartree), Eq. (20), 
as computed from the BM-B2 model. 
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FIG. 4. Pressure-volume diagram for the NaF crys- 
tal: (a) Ref. (18); (b) BM-B2 calculation: (c) Ref. (19); 
(d) MPfcc; (e) MP bee. Open triangles are experimental 
data from Ref. (30). 

the interionic distance decreases when the 
pressure increases, as it should be. The cur- 
vature of these isobars at the minimum also 
increases with increasing pressure, in agree- 
ment with the known pressure dependence 
of the bulk modulus. 

The minima of the isobars give the equilib- 
rium geometry as a function of the external 
pressure, i.e., thep-V behavior of the crys- 
tal. This information is plotted in Fig. 4 with 
the experimental results obtained by Drick- 
amer et al. (30). Our results are very close to 
those by Cohen and Gordon (18) and follow 
rather well the observed trend. Deviations 
from experiment increase with pressure but 
they are, in the worse case, smaller than 8%. 

The pressure behavior of the elastic con- 
stants has been computed by introducing 
the equilibrium distance of each isobar into 
Eqs. (15-19). This gives the numbers in Ta- 
ble VI. The linear dependence of Ci,, Ci2, 
C,, and B with the applied pressure can be 

clearly seen in Fig. 5. Our deviation from 
the Cauchy relation increases smoothly with 
increasing pressure, as expected. It is, in 
any case, smaller than 10%. C,, decreases 
with increasing pressure and nearly van- 
ishes at 50 GPa. Such pressure gives the 
stability limit for this phase, i.e., any phase 
transition should appear at smaller pres- 
sures. Cohen and Gordon predicted a 
fee-bee transition at 32.6 GPa (18). Yagi, 
Suzuki, and Akimoto (31) reported such 
transition at 27 GPa with a volume change 
at the transition of -8.9%. On the other 
hand, Drickamer data indicate that the fee 
phase is the more stable one up to 40 GPa. 

The comparison of the plots in Fig. 5 with 
the experiment is not easy since the mea- 
surements go up to a few gigapascals. Rob- 
erts and Smith (32) and Hart and Green- 
wood (33, 34) give the pressure derivatives 
at zero pressure for the C,. The first deriva- 
tive is largest for Ci, and nearly zero for C,,. 
The second derivative is very small for these 
three constants and positive only for C,2. 
Our results in Fig. 5 are qualitatively consis- 
tent with these observations although the 
observed variation of the C, with pressure 
is larger than that deduced from our model. 
A very similar discrepancy is found in the 
theoretical results by Cohen and Gordon 
(18). 

The performance of the simple model dis- 
cussed in this section is qualitatively correct 
and quantitatively rather accurate. Those 
properties determined by the first derivative 
of the crystal energy curve are computed in 
better agreement with the experiment than 
those related to the second derivative, 
which are more sensitive to contributions 
from nonclassical energy terms between 
equal ions. Such interactions have been ne- 
glected in this work beyond the intracluster 
calculation. The computed elastic con- 
stants, their pressure behavior, and the p-V 
diagram obtained here show a crystal softer 
than the real one. This is clearly a conse- 
quence of neglecting the very many short- 
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TABLE VI 
PRESSURE DEPENDENCE OF THE EQUILIBRIUM INTERIONIC DISTANCE (A) 

AND THE ELASTIC CONSTANTS (GPa) 

p(GPa) 4 Cl1 Cl2 c44 B C' c44 + 2P 

0 2.370 77.2 25.2 25.7 42.5 25.9 25.1 
10 2.246 159.2 40.9 22.1 80.4 59.1 42.1 
20 2.175 229.6 54.4 17.3 112.8 87.6 57.3 
30 2.125 295.4 67.0 11.8 143.1 114.2 71.8 
40 2.085 357.6 78.9 6.0 171.8 139.3 86.0 
50 2.052 418.6 90.7 -0.2 200.0 163.1 99.8 

Note. Last column has been added to see the deviation from the Cauchy relation (C,2 = Cqq + 2~). 

range repulsions in the cluster-lattice inter- 
action, although some error may be intro- 
duced by the simple formula adopted to esti- 
mate the repulsions from the intracluster 
energy. 

This model should be viewed as a straight- 
forward extension of the entirely classical 
model described in Ref. (20), where inter- 
and intracluster interactions were approxi- 
mated by point-charge potentials. The quan- 
tum correction introduced here eliminates 
in part the empirical character of this crude 
approach, at least in the treatment of the 
short-range terms. 

V. Octahedral Clusters: Rigorous 
Lattice Models 

The work reported in this section has been 
performed with the B2 basis. Intracluster 
interactions have been computed more ac- 
curately because the renormalization cor- 
rection (21,22) and the core projection (1.3, 
14) have been considered. The first correc- 
tion improves the description of the li- 
gand-ligand interactions by computing a 
collection of integrals neglected at the unre- 
normalized stage. The second one nearly 
eliminates the unwanted two-center, core- 
valence nonorthogonality introduced by the 
frozen-core approximation. These two cor- 

tron repulsion at short distances and tend to 
vanish when R increases. 

The two lattice models discussed in this 
section have been described in Ref. (15). 
Here we will give only the necessary details. 
The lattice ions are now explicitly consid- 
ered as quantum-mechanical species. They 
are described with the B2 basis in Table I. 

o----i- 
0 10 20 30 40 50 

P (GPa) 

0- 
0 10 20 30 40 50 

P (GPa) 

Cl4 IGPa) 
2517 

lo! 
5l ‘\ ‘\, loo; ,,/ ’ 

0 
I- 

\-; 501 

-5i o! 
0 10 20 30 40 50 0 10 20 30 40 50 

P (GPaI P IGPa) 

FIG. 5. Pressure dependence of the elastic constants 
rections increase the total intracluster elec- (GPa) of the NaF. 
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At the ith point of the cluster the S lattice ion 
produces an effective potential of the form OPTIMUM PARAMETERS FOR THE MODEL POTENTIAL 

IN EQ. (26), 82 BASIS 
V,&) = -.Eg + C(i) + v;(i), (21) 

where Zs is the nuclear charge, 

v;(i) = 1 &-&-,‘dT2 (22) 

is the Coulombic electron repulsion, and 

n(k,S) A(k.9 4k S) 

Na+Z= llN=3 
0 10.053 495 631 1.494 920 816 
1 - 12.749 541 568 1.964 747 574 
1 - 15.428 454 108 12.511 007 976 

F-2=9N=3 
0 - 10.044 679 758 1.979 006 678 
1 -0.063 634 592 0.962 386 798 
1 13.227 511 685 9.194 318 964 

v;(i) = - 2 z c 
1 in= -I 

1 alm,S> A(l,a,b,iP <blm,S ( (23) 

is a nonlocal exchange approximation intro- 
duced by Huzinaga et al. (26) and incorpo- 
rated in solid state calculations by Barandi- 
aran and Seijo (9). 

In Eq. (23), { ) alm,S>} are products of 
spherical harmonics and primitive radial 
functions for the S ion. The A(l,ab,S) num- 
bers are the elements of the matrix 

A = S-‘KS-’ (24) 

and S and K are the overlap and exchange 
matrices for the S ion in the { 1 alm,S>} 
basis. 

the crystal into a quantum and a classical 
lattice. The first one is made of the 50 ions 
separated a distance R; from the center of 
the cluster with 2’12R0 I Ri 5 5’12R0, R, being 
the smallest interionic distance in the lattice. 
The remaining ions form the classical lattice 
and may be considered as point charges. 
Thus, they contribute nothing to the lattice 
projector and give a lattice potential that 
is computed through the Ewald method as 
discussed before. 

The lattice effective potential V,, is the 
sum of the ionic potentials V& for all ions 
in the lattice. The lattice effective Hamilto- 
nian is made of Verrand the lattice projection 
operator 

p’(i) = zs 1 ‘i’” > (Kg) < ‘b” 1 7 (25) 

where g runs over all occupied orbitals +,“. 
The projection constants K.~ have been iden- 
tified here with the negative of the orbital 
energy of the +!J~ orbital. These energies have 
been collected in Table I. 

The sum of nuclear attraction and Cou- 
lomb terms due to the S lattice ion can be 
accurately represented by means of a model 
potential of the form discussed by Bonifacic 
and Huzinaga (35) 

V&.(r) = -zSr-’ 

( 
1 + 2 A(k,S) rnCkjs) ew[ - &,Sbl (26) 

k=l ) 

where A&!?), n(k,S), and a&Y) are fitting 
parameters. In Table VII we collect our best 
values for these parameters. 

A. The Hartree Lattice Model 
The effective lattice potential and the lat- 

tice projector decay rather quickly with in- 
creasing distance. We have seen that only 
the 50 ions in the first four layers around the 
reference cluster give nonvanishing contri- 
butions to the quantum lattice operators. 
This permits us to partition computationally . 

The Hartree model appears when the 
electronic structure of the lattice ions is de- 
scribed by a Hartree product instead of an 
antisymmetric wave function. In conse- 
auence. the cluster-lattice exchange inter- 

TABLE VII 

, 
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TABLE VIII 

RESULTS FROM THE HARTREE LATTICE MODEL (HARTREE) FOR NaFi- (FIRST Rows) 
AND FNG+ (SECOND Rows) 

R(A) 2.00 2.15 2.25 2.35 2.45 2.60 

E,, + 157 
Eer + 1069 
E,,,, + 157 
En,, + 1069 
Eadd + 157 
Eadd + 1069 
E tryst + 261 

- 5.78208 
-5.59971 

2.55792 
0.29802 

- 1.61208 
- 2.65085 
- 1.79923 
-3.91000 

1.42493 
1.39169 

-0.18715 
- 1.25916 
- 0.06376 

-5.24111 
-5.11044 

1.50947 
0.16907 

- 1.86582 
- 2.47069 
- 2.85566 
-3.72138 

0.87598 
1.21999 

- 0.98984 
- 1.25070 
- 0.17722 

- 4.94859 
-4.84049 

1.05225 
0.11299 

- 1.94817 
- 2.36375 
- 3.25870 
- 3.59278 

0.63764 
1.13472 

- 1.31053 
- 1.22903 
-0.21994 

-4.69712 
- 4.60623 

0.73159 
0.07564 

- 1.98277 
- 2.26530 
- 3.50308 
-3.46441 

0.46245 
1.06619 

- 1.52032 
- 1.19911 
- 0.24563 

- 4.47644 - 4.19350 
- 4.39952 -4.13342 

0.50722 0.29406 
0.05069 0.02814 

- 1.98461 - 1.94972 
-2.17442 -2.05264 
- 3.63673 - 3.70237 
- 3.33903 -3.16292 

0.33249 0.19707 
1.00980 0.94236 

- 1.65212 - 1.75265 
- 1.16462 -1.11028 
- 0.25953 -0.26613 

action is neglected. Results of this model for 
the NaFz- and the FNg+ clusters at several 
interionic distances can be seen in Table 
VIII. 

In this table we see that the expectation 
values of the effective potential are very 
similar for the NaFi- and FNai+ systems, 
particularly at larger distances. This energy 
becomes increasingly attractive when the 
interionic distance decreases. 

The lattice-projection contribution makes 
a large difference between the two clusters 
and it is mainly responsible for the differ- 
ences in the interaction energy.The projec- 
tion energy is larger in the NaFz- cluster 
because the fluoride density is more ex- 
tended than the sodium density. 

The net energies of the Hartree model, 
E$, are repulsive. In NaFz- the Er&7) 
function is particularly steep, due again to 
the more diffuse electron distribution of the 
fluoride ions. These energies can be com- 
pared with the corresponding values at the 
cluster-in uucuo level, Get. The latter are 
the entries in Table II. We can see that AE,,,, 
= Efret - Ez,, > 0 for these two clusters. 
This is so because in the Hat-tree calculation 

we introduce the effective repulsions associ- 
ated to the renormalization and the core pro- 
jection, plus the possible deformation of the 
cluster wave function induced by the lattice 
operators appearing in the Fock operator. 
InFNa, , 5+ the compact density of the Na+ 
ligands makes the renormalization correc- 
tion extremely small and we find values of 
AE,,, ranging from 0.03 hartree at 2.15 A to 
0.005 at 2.60 A. In NaFi- the renormaliza- 
tion is important and we find AE,,, = 0.5 
hartree at 2.15 A and 0.087 at 2.60 A. 

The additive energy is rather different for 
these two clusters (see Fig. 6.). In FNa:+ it 
increases slowly with R but the opposite is 
true for the NaFz- . As in the single-ion clus- 
ters considered in the PI model, the anionic 
additive energy behaves as a strongly repul- 
sive interaction, their cationic counterpart 
being slightly attractive. As a result, we find 
a crystal energy slightly repulsive, from 2.0 
to 2.6 A. 

It may be interesting to compute the lat- 
tice energy E,,,, at 2.35 A, our closest value 
to the observed R,. The energy of the infi- 
nitely separated ions is obtained by feeding 
Eq. (7) with the numbers in the last row of 
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FIG. 6. Additive energy (hartree) of the NaFa- and 
the FNg+ clusters, and crystal energy of the NaF, 
according to the Hartree model. 

Table II. We find - 260.94537 hartree. From 
Table VIII we get Ecrysta, = - 261.24563 har- 
tree. The lattice energy is then, at this dis- 
tance, 0.30026 hartree = 188 kcal/mole. 
This number is nearly 30 kcal/mole too short 
with respect to the experimental value. 

In conclusion, this sophisticated lattice 
model predicts an unstable crystal and gives 
a vertical lattice energy in error by 30 kcal/ 
mole. This calculation shows the sensibility 
of these predictions to the details of the clus- 
ter-lattice interaction. 

B. The Model Potential Lattice Model 
The MP lattice model is the Hartree model 

enlarged with the nonlocal exchange term in 
Eq. (23). This quantum lattice contribution 
works as an effective attraction energy in 
the cluster space, more intense for shorter 
cluster sizes. This action of the exchange 
terms was already observed by Lowdin (36). 
The MP results appear in Table IX. 

The expectation value of the effective po- 

tential is now more negative, particularly at 
shorter distances. This effect is larger in the 
NaFg- cluster due to the more extended 
electron density of the ligands. The modifi- 
cation of the cluster Fock operator due to 
the lattice exchange term does not produce 
observable changes in the cluster wave 
function. This can be seen in the expectation 
values of the lattice projection operator as 
well as in the net energy. Both quantities in 
Table IX coincide with their corresponding 
entries in Table VIII. Due to this, the modi- 
fications in the interaction energy produced 
by the exchange interactions are those ap- 
pearing in the effective potential. 

These modifications are propagated into 
the additive energies that become more neg- 
ative for the two clusters, particularly at 
smaller distances (Fig. 7). The crystal en- 
ergy gives a bound crystal, with an elec- 
tronic energy curve very symmetrical 
around the minimum at R, = 2.247 A. At 
this geometry we find a crystal energy of 
- 261.31467 hartree (Em = - 260.94537 har- 

Energy (hartree) 
0.0 7 _~.~_~_ 

I 
Ecrystal + 261 hartree 

I -- - -- I 

Eadd(FNa6)+1069 hartree 1 
I 

-2.0 k 2, 
1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 

R (bohr) 

FIG. 7. Additive energy of the NaFi- and the 
FNaa+ clusters, and crystal energy of the NaF, accord- 
ing to the Model Potential lattice model. 
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TABLE IX 
RESULTS FROM THE MODEL POTENTIAL LATTICE MODEL (HARTREE) FOR NaFi- 

(FIRST Rows) AND FNd+ (SECOND Rows) 

R& 2.00 2.15 2.25 2.35 2.45 2.60 

Wed -7.91433 -6.51781 -5.84609 -5.32582 -4.91535 -4.45036 
-6.58269 -5.71226 -5.26852 -4.90861 -4.61171 -4.25787 

(ZPS) 2.55792 1.50947 1.05225 0.73159 0.50722 0.29406 
0.29802 0.16907 0.11299 0.07564 0.05069 0.02814 

&“, -2.67821 -3.14234 -2.50417 -2.77160 -2.57777 -2.39692 -2.41649 -2.29712 -2.20407 -2.28051 -2.07815 -2.11487 
Eerr + 757 -3.93149 -4.13236 -4.15619 -4.13179 -4.07564 -3.95923 
EeK + 1069 -4.89291 -4.32320 -4.02081 -3.76679 -3.55122 -3.28736 
En,,, + 757 1.42492 0.87598 0.63764 0.46245 0.33249 0.19707 
E,,, + 1069 1.39170 1.22000 1.13472 1.06619 1.00980 0.94236 
Eadd + 757 - 1.25328 -1.62819 - 1.75927 -1.83468 -1.87158 -1.88108 
Eadd + 1069 -1.75064 - 1.55161 - 1.44305 -1.35031 -1.27071 -1.17250 
E + 261 tryst -0.28628 -0.31140 -0.31462 -0.31214 -0.30604 -0.29337 

tree, Table II) and a lattice energy of 0.36930 
hat-tree = 23 1.7 kcahmole. This number de- 
viates by about 5% from the experimental 
range. From the computed EcrYsta,(R) curve 
we obtain a bulk modulus of 59.4 GPa at R,, 
in good agreement with the observed 51.4 
GPa (37). It is necessary to recall, however, 
the high sensitivity of the computed bulk 
modulus against changes in the fitting ex- 
pression used to represent the values of 
E crystal* 

In conclusion, adding the lattice exchange 
term into the Hartree model does not have 
any appreciable effect in the cluster wave 
function and the cluster net energy. As a 
consequence, the lattice projection remains 
also unaffected. However, the exchange 
term makes more negative the cluster-lat- 
tice interaction and this effect is enough, in 
this case, to produce a stable crystal. We 
see here a clear example of the significance 
of the approximations adopted for the clus- 
ter-lattice interaction. 

Having a bound crystal, we can study the 
behavior of the system under high pressure. 
We compute the Gibbs free energy isobars 
of Eq. (20) from 0 to 50 GPa. From a plot 
like that in Fig. 3 we obtain the minimum 

values R. and G( p,R,) at each selected pres- 
sure p, This gives the cell volume V(p) = 
2Ri and the p-V behavior of the crystal. 
This behavior has been plotted in Fig. 4, 
where we can see the good agreement be- 
tween the experimental data reported by 
Drickamer and co-workers (30, 38) and the 
MP prediction for the fee phase. The pres- 
sure dependence of the bulk modulus is 
computed with Eq. (27), 

B(p) = (18R)-'(a2E,,,,,,,(R)laR2) 
- (9R2)- ‘)~E,,,,,,,UWRL (27) 

where the partial derivatives are computed 
for each pressure at the corresponding R,. 
The values of G( p,R,) give also (when sub- 
tracted from EJ the lattice energy at the 
pressure p. Our numerical results are col- 
lected in Table X. 

The bulk modulus varies linearly with 
pressure. The MP prediction is B(GPA) = 
59.43 + 4.93 p(GPa). The Gibbs free energy 
at the minimum of each isobar and the crys- 
tal energy are plotted in Fig. 8 for the range 
of pressures analyzed here. These two 
curves coincide at zero pressure. Since 
these numbers correspond to 0 K, the crys- 
tal energy coincides with the Helmholtz 
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TABLE X 
PRESSURE EFFECTS FORTHE~CCPHASEOF NaF ACCORDINGTO 

THEMODELPOTENTIALLATTICEMODEL 

p(GPa) R,@) V(W3) V/V" B(GPa) E,,,,(kcallmole) 

0 2.247 22.69 1 .ooo 59.43 231.7 
5 2.195 21.15 0.932 83.98 216.0 

10 2.157 20.07 0.885 109.2 201.2 
20 2.103 18.61 0.820 157.8 173.4 
25 2.083 18.07 0.796 181.6 160.2 
30 2.066 17.63 0.777 203.5 147.1 
40 2.032 16.77 0.739 255.4 122.3 

function of the crystal and its slope in Fig. 
8 is the negative of the applied pressure. The 
second derivative is positive all along the 
range and consequently we have (dp/aV), 
< 0 up to 50 GPa. In this figure we also see 
the steep increase of the pV energy term 
(the difference between the two curves) with 
increasing pressure. 

According to an approximation advanced 
by Lowdin (36), the repulsion energy in NaF 
and other highly ionic compounds, Erep, 

-261.10 
Energy (hartreel 

I-- NaF. fee phase, MP Model 

i ’ 
-261.20L i I 

x Gibbs free energy E&,,,(R) = Em -AFIR 

-261.251 
‘._ 

-261.301 \k. 
‘\ 

‘\\ 
-.-----l 

Crystal energy 

-261.35: I 
15 17 19 21 23 25 

Cell volume (cubic A) 

FIG. 8. Pressure effects on the crystal energy and 
Gibbs free energy of NaF according to the Model Po- 
tential lattice model. 

should depend essentially upon the number 
of first neighbors and should be the same for 
the fee and bee structures. The only differ- 
ence would come from the many-body en- 
ergy terms that are proportional to the 
Madelung constant. Since the Madelung 
constant for these two structures is very 
similar, this difference should be really 
small. Assuming this approximation, we can 
write the crystal energy in the form 

Eg,&R) = E, - AFIR + n E,,,(R), (28) 

where A, is the Madelung constant and IZ 
the number of first neighbors. Equation (28) 
gives us the possibility of estimating the 
crystal energy of the bee phase of the NaF 
without performing new cluster-in-the-lat- 
tice calculations. From the fee energy we 
obtain: 

+ 4(E&,,,(R) - E, + Afcc/R)13. (29) 

In Table XI we show the values of the 
Lowdin repulsion energy and the corre- 
sponding crystal energy for the bee phase. 
This repulsion energy is noticeably different 
from the nonclassical energy in Eq. (11) 
since we deal here with a larger number of 
interionic interactions. The Lowdin EreP can 
be approximated by means of the exponen- 
tialOE&hartree) = 183.25708 exp( - 4.53486 
R(A)) only with qualitative accuracy, since 



THEORY OF BULK PROPERTIES OF IONIC CRYSTALS 57 

TABLE XI 

BINDING ENERGIES (HAR~REE) FOR THE fee PHASE (MODEL POTENTIAL LATTICE MODEL) AND bee PHASE 
(L~WDIN APPROXIMATION, EQS. (28) AND (29)) 

2.00 2.15 2.25 2.35 2.45 2.60 

E fee - E, -0.34090 -0.36602 -0.36924 -0.36676 -0.36066 -0.34799 
&cc - Em -0.30440 -0.34824 -0.35883 -0.36124 -0.35831 -0.34844 
E w 0.02024 0.01074 0.00699 0.00447 0.00280 0.00132 

this formula gives deviations of about 5% 
(see Fig. 9). 

The crystal energy of the bee lattice gives 
the Gibbs function 

Gbcc(R,p) = IT$;;~,,(R) + 8(3)“*R3pP/9. 
(30) 

From this free energy we have computed 
the results in Table XII for the bee phase. 
In agreement with the Lowdin observation 
(36), the bee phase has a larger equilibrium 
distance but a shorter cell volume than the 
fee phase. Our numbers show a bee volume 
about 87% of the fee volume, at zero pres- 
sure. Cohen and Gordon (18) found a 92% 
value. The bulk modulus for the bee phase is 
also linear in the pressure, with a somewhat 
larger intercept and smaller slope than the 
fee function. The fee and bee B(p) functions 
cross each other near 20 GPa. 

Comparing the fee lattice energy in Table 
X with the bee energy in Table XII we see 
that a crossing occurs around 15-20 GPa. 
Cohen and Gordon predicted a transition 
pressure of 32 GPa and other semiempirical 
calculations (39) give transition pressures 
near 20 GPa. Other calculations like those 
by Yamashita and Asano (40) and Bose, 
Ghosh, and Basu (41) also predict a fee-bee 
transition below 50 GPa. As noted before, 
such transition has been detected by Yagi et 
al. (31) at 27 GPa. However, the p-V data 
by Dtickamer and co-workers (30, 38) do 
not support such transition, as can be seen 
in Fig. 4, where the MP results for the p-V 
behavior of the bee structure have also been 

plotted. The discrepancy, as far as our cal- 
culation is concerned, may perfectly be due 
to the different quality of the calculation for 
fee and bee phases. Due to this, the results 
for the bee phase presented here should be 
viewed as first-order estimates. To maintain 
the standard of the MP model, we should 
perform cluster-in-the-lattice calculations 
on the conjugate cubal NaFi- and FNai+ 
units. 

The results presented here are a simple 
example of the potential usefulness of a new 
theoretical tool: a standard ab initio molecu- 

0.024E~rw (hartree) 

0.020 

1 
0.016. 

0.012- 

1 
0.008 
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0.004- 

q.000 c 
1.9 

, Ldwdin repulsion energy i 

- A  

2.1 2.3 2.5 2.7 

R (angstrom) 

FIG. 9. Exponential approximation to the LBwdin 
repulsion energy (solid line): E,,(hartree) = 183.25708 
exp( -4.53486 R(A)). Empty squares are the predic- 
tions of the Model Potential lattice model. 
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TABLE XII 
PRESSURE EFFECTS FOR THE bee PHASE ACCORDING TO THE 

MODEL POTENTIAL LATTICE MODEL AND 
THE LOWDIN APPROXIMATION 

p(GW R,(.h V(A3) VIVg,, B(GPa) E,,,,(kcallmole) 

0 2.338 132.86 0.868 72.8 226.7 
5 2.292 125.08 0.817 92.2 213.0 

10 2.255 119.11 0.778 113.1 200.0 
20 2.199 110.52 0.722 157.8 175.5 
25 2.178 107.28 0.701 180.9 163.7 
30 2.159 104.57 0.683 203.6 152.6 
40 2.127 100.02 0.653 249.9 130.8 

lar package, interfaced with a set of clus- 
ter-lattice interaction routines, able to keep 
track of all different interaction components 
of the total energy. The PI model is the first, 
yet limited, full implementation of such a 
tool with a cluster defined as a single ion. 
The cluster calculations presented here 
have been performed with the methodology 
developed by Richardson’s group. They 
contain multiple approximations and cannot 
easily be extended to large, realistic SCF 
spaces. Even so, this type of cluster calcula- 
tion has been very useful in the detailed 
study of many difficult problems of the elec- 
tronic structure of ionic solids containing 
open-shell, transition metal impurities. The 
present analysis reveal that they are also 
useful for describing the electronic structure 
of simple ionic crystal. We believe that the 
results reported in this paper might attract 
the attention of individuals developing mo- 
lecular packages and interested in the elec- 
tronic structure of solids and thus lead them 
to include in their programs the necessary 
elements to exploit the great analytical ad- 
vantages of the TES. 
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